Linear systems and Multiplicity of ideals

نویسندگان

  • Lê Dũng Tráng
  • Sevin Recillas
  • C. P. Ramanujam
چکیده

A result of P. Samuel ([17] p. 186, Chap.II, Théorème 5) says that in a local noetherian ring (O,M) of Krull dimension d in which the residual field k is infinite, the multiplicity of a M-primary ideal I is equal to the multiplicity of an ideal (x1, . . . , xd) generated by some parameter sequence x1, . . . , xd contained in I. By a theorem of Rees ([16] p.142 Theorem 9.44), this implies that the ideals I and (x1, . . . , xd) have the same integral closure in the ring O.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS

In this paper, we introduce the class of ideals with $(d_1,ldots,d_m)$-linear quotients generalizing the class of ideals with linear quotients. Under suitable conditions we control the numerical invariants of a minimal free resolution of ideals with $(d_1,ldots,d_m)$-linear quotients. In particular we show that their first module of syzygies is a componentwise linear module.

متن کامل

Some Families of Componentwise Linear Monomial Ideals

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let J = {j1, . . . , jt} be a subset of {1, . . . , n}, and let mJ ⊂ R denote the ideal (xj1 , . . . , xjt). Given subsets J1, . . . , Js of {1, . . . , n} and positive integers a1, . . . , as, we study ideals of the form I = m1 J1 ∩ · · · ∩ m as Js . These ideals arise naturally, for example, in the study of fat points, tetrahedral...

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Bounding Multiplicity by Shifts in the Taylor Resolution

A weaker form of the multiplicity conjecture of Herzog, Huneke, and Srinivasan is proven for two classes of monomial ideals: quadratic monomial ideals and squarefree monomial ideals with sufficiently many variables relative to the Krull dimension. It is also shown that tensor products, as well as Stanley-Reisner ideals of certain unions, satisfy the multiplicity conjecture if all the components...

متن کامل

Resolutions of small sets of fat points

We investigate the minimal graded free resolutions of ideals of at most n + 1 fat points in general position in Pn. Our main theorem is that these ideals are componentwise linear. This result yields a number of corollaries, including the multiplicity conjecture of Herzog, Huneke, and Srinivasan in this case. On the computational side, using an iterated mapping cone process, we compute formulas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011